Understanding the Irrational Number e

1. Recall the formula $A(t)=P e^{r t}$ for instantaneous compounding. Refer to page $345 \# 15$ for additional details. Use this formula to determine the following values.
a) How much will $\$ 100$ be worth invested at 4% per year, after 3 years?
b) How much will $\$ 2000$ be worth invested at 3% per year, after 10 years?
c) How long will it take $\$ 300$ to reach $\$ 500$ invested at 2% per year?
2. On your calculator, graph $y=e^{x}$. Which two functions in the form $y=c^{x}, c \in N$ is it between? What does this imply about the value of e ?
3. Consider the expression

$$
\sum_{x=0}^{\infty} \frac{1}{x!}
$$

Evaluate this expression for a reasonably large value of x, such as $50 \ldots$ much larger and your calculator may overflow! The sigma operation is in MATH 0:summation. It adds up all of the terms of the series as x goes from 0 to ∞. Do you recognize this value?
4. See page 382 C3 Mini Lab. Complete Step 1 only. Evaluate the expression $\left(1+\frac{1}{n}\right)^{n}$ as $n \rightarrow \infty$.

Conclusion: e is an irrational number (just like π) that is approximately equal to 2.718 . We will see more of this number in chapter 8 and also in Calculus.

